On the cyclic decomposition of circulant graphs into almost-bipartite graphs
نویسندگان
چکیده
It is known that if an almost bipartite graph G with n edges possesses a γlabeling, then the complete graphK2nx+1 admits a cyclicG-decomposition. We introduce a variation of γ-labeling and show that whenever an almost bipartite graph G admits such a labeling, then there exists a cyclic Gdecomposition of a family of circulant graphs. We also determine which odd length cycles admit the variant labeling.
منابع مشابه
On the cyclic decomposition of circulant graphs into bipartite graphs
It is known that if a bipartite graph G with n edges possesses any of three types of ordered labelings, then the complete graphK2nx+1 admits a cyclic G-decomposition for every positive integer x. We introduce variations of the ordered labelings and show that whenever a bipartite graph G admits one of these labelings, then there exists a cyclic G-decomposition of an infinite family of circulant ...
متن کاملOn Edge-Decomposition of Cubic Graphs into Copies of the Double-Star with Four Edges
A tree containing exactly two non-pendant vertices is called a double-star. Let $k_1$ and $k_2$ be two positive integers. The double-star with degree sequence $(k_1+1, k_2+1, 1, ldots, 1)$ is denoted by $S_{k_1, k_2}$. It is known that a cubic graph has an $S_{1,1}$-decomposition if and only if it contains a perfect matching. In this paper, we study the $S_{1,2}$-decomposit...
متن کاملMixed cycle-E-super magic decomposition of complete bipartite graphs
An H-magic labeling in a H-decomposable graph G is a bijection f : V (G) ∪ E(G) → {1, 2, ..., p + q} such that for every copy H in the decomposition, ΣνεV(H) f(v) + ΣeεE(H) f(e) is constant. f is said to be H-E-super magic if f(E(G)) = {1, 2, · · · , q}. A family of subgraphs H1,H2, · · · ,Hh of G is a mixed cycle-decomposition of G if every subgraph Hi is isomorphic to some cycle Ck, for k ≥ ...
متن کاملOn the perfect 1-factorisation problem for circulant graphs of degree 4
A 1-factorisation of a graph G is a partition of the edge set of G into 1factors (perfect matchings); a perfect 1-factorisation of G is a 1-factorisation of G in which the union of any two of the 1-factors is a Hamilton cycle in G. It is known that for bipartite 4-regular circulant graphs, having order 2 (mod 4) is a necessary (but not sufficient) condition for the existence of a perfect 1-fact...
متن کاملGeneral Cyclic Orthogonal Double Covers of Finite Regular Circulant Graphs
An orthogonal double cover (ODC) of a graph H is a collection ( ) { } v G v V H : = ∈ of ( ) V H subgraphs (pages) of H, so that they cover every edge of H twice and the intersection of any two of them contains exactly one edge. An ODC of H is cyclic (CODC) if the cyclic group of order ( ) V H is a subgroup of the automorphism group of . In this paper, we introduce a general orthogonal la...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Australasian J. Combinatorics
دوره 49 شماره
صفحات -
تاریخ انتشار 2011